Neptune is the eighth and farthest-known Solar planet from the Sun. In the Solar System, it is the fourth-largest planet by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times the mass of Earth, slightly more massive than its near-twin Uranus. Neptune is denser and physically smaller than Uranus because its greater mass causes more gravitational compression of its atmosphere. The planet orbits the Sun once every 164.8 years at an average distance of 30.1 AU (4.5 billion km; 2.8 billion mi). It is named after the Roman god of the sea and has the astronomical symbol , representing Neptune’s trident. A second symbol, an L-V monogram for ‘Le Verrier’, analogous to the H monogram for Uranus, was never much used outside of France and is now archaic.
Neptune is not visible to the unaided eye and is the only planet in the Solar System found by mathematical prediction rather than by empirical observation. Unexpected changes in the orbit of Uranus led Alexis Bouvard to deduce that its orbit was subject to gravitational perturbation by an unknown planet. After Bouvard’s death, the position of Neptune was predicted from his observations, independently, by John Couch Adams and Urbain Le Verrier. Neptune was subsequently observed with a telescope on 23 September 1846[1] by Johann Galle within a degree of the position predicted by Le Verrier. Its largest moon, Triton, was discovered shortly thereafter, though none of the planet’s remaining 13 known moons were located telescopically until the 20th century. The planet’s distance from Earth gives it a very small apparent size, making it challenging to study with Earth-based telescopes. Neptune was visited by Voyager 2, when it flew by the planet on 25 August 1989; Voyager 2 remains the only spacecraft to visit Neptune. The advent of the Hubble Space Telescope and large ground-based telescopes with adaptive optics has recently allowed for additional detailed observations from afar.
Like Jupiter and Saturn, Neptune’s atmosphere is composed primarily of hydrogen and helium, along with traces of hydrocarbons and possibly nitrogen, though it contains a higher proportion of “ices” such as water, ammonia and methane. However, similar to Uranus, its interior is primarily composed of ices and rock; Uranus and Neptune are normally considered “ice giants” to emphasise this distinction. Traces of methane in the outermost regions in part account for the planet’s blue appearance, though an unknown component is believed to color Neptune a deeper blue compared to Uranus.
In contrast to the hazy, relatively featureless atmosphere of Uranus, Neptune’s atmosphere has active and visible weather patterns. For example, at the time of the Voyager 2 flyby in 1989, the planet’s southern hemisphere had a Great Dark Spot comparable to the Great Red Spot on Jupiter. More recently, in 2018, a newer main dark spot and smaller dark spot were identified and studied. In addition, these weather patterns are driven by the strongest sustained winds of any planet in the Solar System, with recorded wind speeds as high as 2,100 km/h (580 m/s; 1,300 mph).[23] Because of its great distance from the Sun, Neptune’s outer atmosphere is one of the coldest places in the Solar System, with temperatures at its cloud tops approaching 55 K (−218 °C; −361 °F). Temperatures at the planet’s centre are approximately 5,400 K (5,100 °C; 9,300 °F). Neptune has a faint and fragmented ring system (labelled “arcs”), which was discovered in 1984, then later confirmed by Voyager 2.
Photograph taken by NASA’s Voyager 2 in 1989
Some of the earliest recorded observations ever made through a telescope, Galileo’s drawings on 28 December 1612 and 27 January 1613 contain plotted points that match up with what is now known to be the position of Neptune. On both occasions, Galileo seems to have mistaken Neptune for a fixed star when it appeared close—in conjunction—to Jupiter in the night sky.[27] Hence, he is not credited with Neptune’s discovery. At his first observation in December 1612, Neptune was almost stationary in the sky because it had just turned retrograde that day. This apparent backward motion is created when Earth’s orbit takes it past an outer planet. Because Neptune was only beginning its yearly retrograde cycle, the motion of the planet was far too slight to be detected with Galileo’s small telescope. In 2009, a study suggested that Galileo was at least aware that the “star” he had observed had moved relative to the fixed stars.
In 1821, Alexis Bouvard published astronomical tables of the orbit of Neptune’s neighbour Uranus. Subsequent observations revealed substantial deviations from the tables, leading Bouvard to hypothesise that an unknown body was perturbing the orbit through gravitational interaction. In 1843, John Couch Adams began work on the orbit of Uranus using the data he had. He requested extra data from Sir George Airy, the Astronomer Royal, who supplied it in February 1844. Adams continued to work in 1845–46 and produced several different estimates of a new planet.
In 1845–46, Urbain Le Verrier, independently of Adams, developed his own calculations but aroused no enthusiasm in his compatriots. In June 1846, upon seeing Le Verrier’s first published estimate of the planet’s longitude and its similarity to Adams’s estimate, Airy persuaded James Challis to search for the planet. Challis vainly scoured the sky throughout August and September. Challis had, in fact, observed Neptune a year before the planet’s subsequent discoverer, Johann Gottfried Galle, and on two occasions, 4 and 12 August 1845. However, his out-of-date star maps and poor observing techniques meant that he failed to recognise the observations as such until he carried out later analysis. Challis was full of remorse but blamed his neglect on his maps and the fact that he was distracted by his concurrent work on comet observations.
Meanwhile, Le Verrier sent a letter and urged Berlin Observatory astronomer Galle to search with the observatory’s refractor. Heinrich d’Arrest, a student at the observatory, suggested to Galle that they could compare a recently drawn chart of the sky in the region of Le Verrier’s predicted location with the current sky to seek the displacement characteristic of a planet, as opposed to a fixed star. On the evening of 23 September 1846, the day Galle received the letter, he discovered Neptune just northeast of Iota Aquarii, 1° from the “five degrees east of Delta Capricorn” position Le Verrier had predicted it to be, about 12° from Adams’s prediction, and on the border of Aquarius and Capricornus according to the modern IAU constellation boundaries.
In the wake of the discovery, there was a heated nationalistic rivalry between the French and the British over who deserved credit for the discovery. Eventually, an international consensus emerged that Le Verrier and Adams deserved joint credit. Since 1966, Dennis Rawlins has questioned the credibility of Adams’s claim to co-discovery, and the issue was re-evaluated by historians with the return in 1998 of the “Neptune papers” (historical documents) to the Royal Observatory, Greenwich.
Shortly after its discovery, Neptune was referred to simply as “the planet exterior to Uranus” or as “Le Verrier’s planet”. The first suggestion for a name came from Galle, who proposed the name Janus. In England, Challis put forward the name Oceanus.
Claiming the right to name his discovery, Le Verrier quickly proposed the name Neptune for this new planet, though falsely stating that this had been officially approved by the French Bureau des Longitudes. In October, he sought to name the planet Le Verrier, after himself, and he had loyal support in this from the observatory director, François Arago. This suggestion met with stiff resistance outside France. French almanacs quickly reintroduced the name Herschel for Uranus, after that planet’s discoverer Sir William Herschel, and Leverrier for the new planet.
Struve came out in favour of the name Neptune on 29 December 1846, to the Saint Petersburg Academy of Sciences. Soon, Neptune became the internationally accepted name. In Roman mythology, Neptune was the god of the sea, identified with the Greek Poseidon. The demand for a mythological name seemed to be in keeping with the nomenclature of the other planets, all of which, except for Earth, were named for deities in Greek and Roman mythology.
Most languages today use some variant of the name “Neptune” for the planet; indeed, in Chinese, Vietnamese, Japanese, and Korean, the planet’s name was translated as “sea king star” (海王星). In Mongolian, Neptune is called Dalain van (Далайн ван), reflecting its namesake god’s role as the ruler of the sea. In modern Greek the planet is called Poseidon (Ποσειδώνας, Poseidonas), the Greek counterpart of Neptune. In Hebrew, Rahab (רהב), from a Biblical sea monster mentioned in the Book of Psalms, was selected in a vote managed by the Academy of the Hebrew Language in 2009 as the official name for the planet, even though the existing Latin term Neptun (נפטון) is commonly used. In Māori, the planet is called Tangaroa, named after the Māori god of the sea.In Nahuatl, the planet is called Tlāloccītlalli, named after the rain god Tlāloc. In Thai, Neptune is referred to by its Westernised name Dao Nepjun (ดาวเนปจูน), but is also called Dao Ketu (ดาวเกตุ, lit. ’star of Ketu’), after Ketu (केतु), the descending lunar node, who plays a role in Hindu astrology. In Malay, the name Waruna, after the Hindu god of seas, is attested as far back as the 1970s, but was eventually superseded by the Latinate equivalents Neptun (in Malaysian) or Neptunus (in Indonesian).
The usual adjectival form is Neptunian. The nonce form Poseidean (/pəˈsaɪdiən/), from Poseidon, has also been used, though the usual adjectival form of Poseidon is Poseidonian (/ˌpɒsaɪˈdoʊniən/).
From its discovery in 1846 until the discovery of Pluto in 1930, Neptune was the farthest-known planet. When Pluto was discovered, it was considered a planet, and Neptune thus became the second-farthest-known planet, except for a 20-year period between 1979 and 1999 when Pluto’s elliptical orbit brought it closer than Neptune to the Sun. The discovery of the Kuiper belt in 1992 led many astronomers to debate whether Pluto should be considered a planet or as part of the Kuiper belt. In 2006, the International Astronomical Union defined the word “planet” for the first time, reclassifying Pluto as a “dwarf planet” and making Neptune once again the outermost-known planet in the Solar System.
Neptune’s mass of 1.0243×1026 kg is intermediate between Earth and the larger gas giants: it is 17 times that of Earth but just 1/19th that of Jupiter.[d] Its gravity at 1 bar is 11.15 m/s2, 1.14 times the surface gravity of Earth, and surpassed only by Jupiter. Neptune’s equatorial radius of 24,764 km is nearly four times that of Earth. Neptune, like Uranus, is an ice giant, a subclass of giant planet, because they are smaller and have higher concentrations of volatiles than Jupiter and Saturn. In the search for exoplanets, Neptune has been used as a metonym: discovered bodies of similar mass are often referred to as “Neptunes”, just as scientists refer to various extrasolar bodies as “Jupiters”.
A size comparison of Neptune and Earth
Neptune’s internal structure resembles that of Uranus. Its atmosphere forms about 5 to 10% of its mass and extends perhaps 10 to 20% of the way towards the core, where it reaches pressures of about 10 GPa, or about 100,000 times that of Earth’s atmosphere. Increasing concentrations of methane, ammonia and water are found in the lower regions of the atmosphere.
The mantle is equivalent to 10 to 15 Earth masses and is rich in water, ammonia and methane. As is customary in planetary science, this mixture is referred to as icy even though it is a hot, dense fluid. This fluid, which has a high electrical conductivity, is sometimes called a water–ammonia ocean. The mantle may consist of a layer of ionic water in which the water molecules break down into a soup of hydrogen and oxygen ions, and deeper down superionic water in which the oxygen crystallises but the hydrogen ions float around freely within the oxygen lattice. At a depth of 7,000 km, the conditions may be such that methane decomposes into diamond crystals that rain downwards like hailstones. Scientists also believe that this kind of diamond rain occurs on Jupiter, Saturn, and Uranus. Very-high-pressure experiments at the Lawrence Livermore National Laboratory suggest that the top of the mantle may be an ocean of liquid carbon with floating solid ‘diamonds’.
The core of Neptune is likely composed of iron, nickel and silicates, with an interior model giving a mass about 1.2 times that of Earth. The pressure at the centre is 7 Mbar (700 GPa), about twice as high as that at the centre of Earth, and the temperature may be 5,400 K.
The internal structure of Neptune:
At high altitudes, Neptune’s atmosphere is 80% hydrogen and 19% helium. A trace amount of methane is also present. Prominent absorption bands of methane exist at wavelengths above 600 nm, in the red and infrared portion of the spectrum. As with Uranus, this absorption of red light by the atmospheric methane is part of what gives Neptune its blue hue, although Neptune’s vivid azure differs from Uranus’s milder cyan. Because Neptune’s atmospheric methane content is similar to that of Uranus, some unknown atmospheric constituent is thought to contribute to Neptune’s colour.
Neptune’s atmosphere is subdivided into two main regions: the lower troposphere, where temperature decreases with altitude, and the stratosphere, where temperature increases with altitude. The boundary between the two, the tropopause, lies at a pressure of 0.1 bars (10 kPa). The stratosphere then gives way to the thermosphere at a pressure lower than 10−5 to 10−4 bars (1 to 10 Pa). The thermosphere gradually transitions to the exosphere.
Models suggest that Neptune’s troposphere is banded by clouds of varying compositions depending on altitude. The upper-level clouds lie at pressures below one bar, where the temperature is suitable for methane to condense. For pressures between one and five bars (100 and 500 kPa), clouds of ammonia and hydrogen sulfide are thought to form. Above a pressure of five bars, the clouds may consist of ammonia, ammonium sulfide, hydrogen sulfide and water. Deeper clouds of water ice should be found at pressures of about 50 bars (5.0 MPa), where the temperature reaches 273 K (0 °C). Underneath, clouds of ammonia and hydrogen sulfide may be found.
High-altitude clouds on Neptune have been observed casting shadows on the opaque cloud deck below. There are also high-altitude cloud bands that wrap around the planet at constant latitude. These circumferential bands have widths of 50–150 km and lie about 50–110 km above the cloud deck. These altitudes are in the layer where weather occurs, the troposphere. Weather does not occur in the higher stratosphere or thermosphere.
Neptune’s spectra suggest that its lower stratosphere is hazy due to condensation of products of ultraviolet photolysis of methane, such as ethane and ethyne. The stratosphere is also home to trace amounts of carbon monoxide and hydrogen cyanide. The stratosphere of Neptune is warmer than that of Uranus due to the elevated concentration of hydrocarbons.
For reasons that remain obscure, the planet’s thermosphere is at an anomalously high temperature of about 750 K. The planet is too far from the Sun for this heat to be generated by ultraviolet radiation. One candidate for a heating mechanism is atmospheric interaction with ions in the planet’s magnetic field. Other candidates are gravity waves from the interior that dissipate in the atmosphere. The thermosphere contains traces of carbon dioxide and water, which may have been deposited from external sources such as meteorites and dust.
© 2021 Tüm hakları saklıdır.